对李雨明的一个题目的证明

less than 1 minute read

Published:

今天李雨明老师在《我们爱几何》微信群里命制了如下题目:

问题:如图,$O$是$\triangle ABC$外心,$OD\perp BC$,$E$在$\odot(AOD)$上,$F$是$OE$与$AD$的交点,$A’$是$A$关于$\triangle FBC$的等角共轭点. 求证:$EA’$过只与$A,B,C,D$有关的定点.

稍加观察我们可以发现定点应该就是$\odot(ABC)$与$\odot(AOD)$的第二交点,这诱使我去考察$A’$的轨迹,而后考虑射影对应.

Proof. 设$A$关于$BC$的对称点为$A_1$,$\odot(ABC)$与$\odot(AOD)$的第二交点为$X$,$AD$交$BC$于$F_1$,$A$关于$\triangle DBC$的等角共轭点为$A_2$,$AX$交$BC$于$A_3$. 则由于$\measuredangle A_1BC=\measuredangle CBA$,$\measuredangle A_2BC=\measuredangle DBA$,$\measuredangle A’BC=\measuredangle FBA$,

\[\begin{aligned}&B[A_1,A_2;C,A']\\=&B[F_1,D;A,F]\\=&[F_1,D;A,F],\end{aligned}\]

同理,

\[\begin{aligned}&C[A_1,A_2;B,A']\\=&C[F_1,D;A,F]\\=&[F_1,D;A,F],\end{aligned}\]

故$A_1,A_2,A’$共线.

由$OA=OX$知$DO$是$\angle ADX$的外角平分线,于是

\[\begin{aligned}&\measuredangle DAA_1\\=&\measuredangle ADO\\=&\measuredangle ODX\\=&\measuredangle OAX,\end{aligned}\]

故由$AO$与$AA_1$是$\angle BAC$的等角线知$AD$与$AX$亦是$\angle BAC$的等角线,故$E$趋于$A$时,$F$沿$AD$趋于$A$,即$A’$趋于$A_3$,故$A_3$亦在$A_1A_2$上. 由$\measuredangle ODX=\measuredangle ADO=\measuredangle ODA_2$可知$D,X,A_2$共线.

考虑以$A$为中心,$AB\cdot AC$为幂,对称轴为$\angle BAC$内角平分线的轴反演反射$\varphi$,则$\varphi(BC)=\odot(ABC)$,$\varphi(O)=A_1$,$\varphi(F_1)=X$,于是$\triangle AOF_1\stackrel{+}{\sim}\triangle AXA_1$,故$\measuredangle(OF_1,XA_1)=\measuredangle OAX$,即$OF_1$与$A_1X$的交点$E_1$在$\odot(AOD)$上.

于是

\[\begin{aligned}&X[E_1,D;A,E]\\=&O[E_1,D;A,E]\\=&[F_1,D;A,F]\\=&[A_1,A_2;A_3,A']\\=&X[A_1,A_2;A_3,A']\\=&X[E_1,D;A,A'],\end{aligned}\]

这就说明$X,E,A’$共线. $\quad\Box$